term pregnancies. This suggests more of a maternal and/or placental role in parturition in healthy, late term pregnancies than previously acknowledged.

References


Electronic door interference mimicking distress in fetal monitoring

A. Imai *, H. Toyoki, T. Furui

Department of Obstetrics and Gynecology, Gifu University School of Medicine, Yanagido, Japan

Received 29 March 2007; accepted 2 April 2007

KEYWORDS
Fetal distress;
Electronic fetal monitoring;
Electromagnetic interference

Continuous electronic fetal monitoring is used widely to assess pathophysiologic events affecting the fetus. It is generally realized that electromagnetic waves can interfere with medical equipment [1,2]. There is insufficient research on electromagnetic interference with electronic fetal monitoring. We report a case of false fetal monitoring triggered by the signals from an automatic labor/delivery room door.

A 34-year-old Japanese primigravida with history of myomectomy four years previously was scheduled to undergo elective cesarean. The prenatal course was uneventful. At 37 weeks and 4 days, premature contractions were managed by ritodrine hydrochloride. External electronic fetal heart rate monitoring (Series 50XM; Philips Medical Systems, Tokyo, Japan) detected a prolonged fetal heart rate deceleration (Fig. 1). Emergency cesarean section was considered but concurrent use of external ultrasound Doppler revealed a reactive fetal heart rate pattern with baseline rate between 120 and 160 beats/min. A similar monitoring discrepancy occurred twice within 2 h. The following day, the patient was delivered by low transverse cesarean section of a male infant weighing 3402 g with Apgar scores of 8 and 10 at 1 and 5 min, respectively.

Clinical engineers measured the electric field intensity in the areas where the equipment was affected. Data analysis showed that wireless signals or electromagnetic waves emitted by an automatic labor/delivery room door were at a similar frequency as the communication channels specified by the fetal monitoring system or directly interfered through an underfloor ground wire. Unlike the actions of mobile phones and wireless local area network (LAN) [1,2], very little information is available concerning the ability of an electromagnetic-producing system to interfere with hospital equipment. This case shows that there was signal distortion and false alarm in an electronic monitoring system. Electromagnetic wave testing of medical electronic equipment to be used in areas of signal production should be considered during installation. Care must be taken that fetal monitoring artifacts are not confused with fetal distress.

References


* Corresponding author. Department of Obstetrics and Gynecology, Gifu University School of Medicine, Yanagido, Gifu 501-1194, Japan. Tel.: +81 58 230 6349; fax: +81 58 230 6348. E-mail address: atsushi@gifu-u.ac.jp (A. Imai).

doi:10.1016/j.ijgo.2007.04.023
Macroprolactinomas may be a cause of infertility. The preferred treatment is the use of dopamine agonists, such as bromocriptine and cabergoline. Cabergoline is usually preferred to bromocriptine, the referent treatment, because it is efficient at prolactin suppression and tumor shrinkage, it has fewer adverse effects, similar or greater efficiency as bromocriptine, and is effective in patients with bromocriptine intolerance or resistance [1]. Bromocriptine is the recommended treatment for pregnant patients with macroprolactinomas and cabergoline is not commonly administered during pregnancy. However, bromocriptine might not always be well tolerated or effective during pregnancy. This paper reports on four pregnant women with macroprolactinomas who were treated with cabergoline.

Two women were treated with cabergoline for macroprolactinomas because of bromocriptine gastric intolerance. In these women cabergoline was well tolerated and its use was maintained throughout pregnancy. A third woman with a macroprolactinoma was treated with quinagolide, although this was stopped at the beginning of the pregnancy. This patient...